About the Course
PART A: Python Programming (30 hours)
Module 1: Python Basics (6 hours)
· Introduction to Python and setup (Anaconda, Jupyter, VS Code)
· Syntax, variables, and data types
· Operators and expressions
· Input/output functions
· Comments and indentation
Module 2: Control Structures (4 hours)
· Conditional statements (if, elif, else)
· Loops: for, while
· Loop control statements: break, continue, pass
Module 3: Data Structures (6 hours)
· Strings, Lists, Tuples, Sets
· Dictionaries and their operations
· Comprehensions (list, dict, set)
Module 4: Functions & Modules (4 hours)
· Defining and calling functions
· Arguments, return values
· Lambda and map/filter/reduce
· Importing built-in and custom modules
Module 5: File Handling & Exceptions (4 hours)
· Reading/writing text and CSV files
· Working with file paths
· Try/except/finally
· Raising exceptions
Module 6: Object-Oriented Programming (6 hours)
· Classes and objects
· Constructors, attributes, methods
· Inheritance and polymorphism
· init, str, super()
PART B: AI & Machine Learning Basics (30 hours)
Module 7: Introduction to AI & ML (3 hours)
· What is AI, ML, DL?
· Real-world use cases
· Types of ML: Supervised, Unsupervised, Reinforcement Learning
· AI vs ML vs DL
Module 8: NumPy & Pandas (6 hours)
· Introduction to NumPy arrays and operations
· Pandas DataFrames and Series
· Data cleaning and manipulation
· Filtering, grouping, merging datasets
Module 9: Data Visualization (3 hours)
· Using matplotlib and seaborn
· Plot types: line, bar, pie, histogram, scatter
· Customizing plots
Module 10: Supervised Learning (6 hours)
· Train-test split and model evaluation (accuracy, precision, recall)
· Linear regression
· Logistic regression
· Classification: k-NN, Decision Trees
· Hands-on using scikit-learn
Module 11: Unsupervised Learning (4 hours)
· Clustering: k-Means, Hierarchical
· Dimensionality reduction: PCA
· Hands-on examples
Module 12: Basic NLP & Chatbots (4 hours)
· Tokenization, Stopwords, Stemming, Lemmatization
· Word frequency (Bag of Words)
· Introduction to simple chatbot logic using rule-based or ML techniques
Module 13: Capstone Project (4 hours)
Choose one mini project:
· AI-based movie recommender
· Email spam classifier
· Student performance predictor
· Rule-based chatbot
· Weather app with visualization





